Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

71%
+3 −0
Q&A How to protect RF switches from ESD?

Those are good questions, and I don't have a single definitive answer for them. I'd start with putting an appropriate TVS (or maybe separate diodes to ground and 3.3 V) between C3 and S1. My reas...

posted 2y ago by Olin Lathrop‭  ·  edited 2y ago by Olin Lathrop‭

Answer
#2: Post edited by user avatar Olin Lathrop‭ · 2022-01-28T18:00:57Z (about 2 years ago)
  • Those are good questions, and I don't have a single definitive answer for them. I'd start with putting an appropriate TVS (or maybe separate diodes to ground and 3.3 V) between C3 and S1. My reason for clipping there is because then this gets to work against the impedance of the inductor.
  • Look carefully at the capacitance of the TVS or diodes, and reduce C2 accordingly. This is where separate diodes might be necessary if you can't find a suitable TVS that has less capacitance than C2 needs to be.
  • In the end, you need to test yourself. Fortunately, the high voltage discharge models are usually no more than a capacitor and resistor, so you can make your own with a high voltage supply. Several places I've worked over the years made jigs like that. At HP we called it the "fickle finger" test. Testing it yourself lets you do fast turn arounds, and gives you confidence you'll pass the real test at the certification company.
  • Those are good questions, and I don't have a single definitive answer for them. I'd start with putting an appropriate TVS (or maybe separate diodes to ground and 3.3 V) between C3 and S1. My reason for clipping there is because then this gets to work against the impedance of the inductor.
  • Look carefully at the capacitance of the TVS or diodes, and reduce C2 accordingly. This is where separate diodes might be necessary if you can't find a suitable TVS that has less capacitance than C2 needs to be.
  • In the end, you need to test yourself. Fortunately, the high voltage discharge models are usually no more than a capacitor and resistor, so you can make your own with a high voltage supply. Several places I've worked over the years made jigs like that. At HP we called it the "fickle finger" test. Testing it yourself lets you do fast turn arounds, and gives you confidence you'll pass the real test at the certification company.
  • <hr>
  • <blockquote> It sounds as we will need to run this in a simulator or we'd be fumbling around in the dark</blockquote>
  • Seems the opposite to me. You need some real experimentation. There are too many unknowns to allow sufficiently realistic simulation of high voltage transients. There are parasitic capacitances all over the place. Parasitic inductances also matter. Capacitors can be quite non-linear at high voltages, and leakage in various places may not be resistive anymore either. The biggest unknown is how exactly the RF switch input reacts to short term out-of-range spikes.
  • All in all, this is a case where you need to use experience, intuition, and something called a "brain". Let the new kid play with the simulator while you actually fix the problem the old fashioned way by doing some real lab work.
#1: Initial revision by user avatar Olin Lathrop‭ · 2022-01-28T13:16:31Z (about 2 years ago)
Those are good questions, and I don't have a single definitive answer for them.  I'd start with putting an appropriate TVS (or maybe separate diodes to ground and 3.3 V) between C3 and S1.  My reason for clipping there is because then this gets to work against the impedance of the inductor.

Look carefully at the capacitance of the TVS or diodes, and reduce C2 accordingly.  This is where separate diodes might be necessary if you can't find a suitable TVS that has less capacitance than C2 needs to be.

In the end, you need to test yourself.  Fortunately, the high voltage discharge models are usually no more than a capacitor and resistor, so you can make your own with a high voltage supply.  Several places I've worked over the years made jigs like that.  At HP we called it the "fickle finger" test.  Testing it yourself lets you do fast turn arounds, and gives you confidence you'll pass the real test at the certification company.