Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

66%
+2 −0
Q&A Deriving resistor values for a taper pad attenuator

Here is another take at that problem. First let's define some quantities that will be useful later: \[ \begin{align} A &= \frac {V_2} {V_1} \qquad\qquad B = \frac {R_L} {R_S} ...

posted 8mo ago by Lorenzo Donati‭  ·  edited 8mo ago by Lorenzo Donati‭

Answer
#2: Post edited by user avatar Lorenzo Donati‭ · 2023-08-23T14:43:14Z (8 months ago)
  • Here is another take at that problem.
  • First let's define some quantities that will be useful later:
  • \[
  • \begin{align}
  • A &= \frac {V_2} {V_1}
  • \qquad\qquad
  • B = \frac {R_L} {R_S}
  • \qquad\qquad
  • r_1 = \frac {R_1} {R_L}
  • \qquad\qquad
  • r_2 = \frac {R_2} {R_L}
  • \qquad\qquad
  • r_3 = \frac {R_3} {R_L}
  • \end{align}
  • \]
  • Since the attenuator port 1 has an input impedance that matches
  • the source, then the source voltage is split in two at the input.
  • Moreover, we also apply the definition of attenuation $A$.
  • \[
  • \begin{align}
  • V_1 &= \frac{V_S}{2}
  • \qquad\qquad
  • V_2 = A V_1 = A \frac{V_S}{2}
  • \end{align}
  • \]
  • We can therefore compute the currents into the ports as:
  • \[
  • \begin{align}
  • I_1 &= \frac{V_S}{2R_S}
  • \\[2 em]
  • I_2 &= -\frac{V_2}{R_L} = -\frac{A}{R_L} \frac{V_S}{2}
  • \end{align}
  • \]
  • Now let's focus on the internal node, the junction between
  • $R_1,R_2, R_3$ (let's call it node 3). You can use KCL to compute
  • the current in $R_3$ and then use Ohm's law to obtain $V_3$:
  • \[
  • \begin{align}
  • I_3 &= I_1 + I_2
  • = \frac{V_S}{2R_S} - \frac{A}{R_L} \frac{V_S}{2}
  • = \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2}
  • \\[2 em]
  • V_3 &= R_3 I_3
  • = R_3 \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2}
  • = \frac{R_3}{R_L} \biggl(\frac{R_L}{R_S} - A \biggr) \frac{V_S}{2}
  • = r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • \end{align}
  • \]
  • Now we can compute $V_3$ also using KVL applied to the input and
  • output loops, obtaining two more independent equations for $V_3$:
  • \[
  • \begin{align}
  • V_3 &= V_1 - R_1 I_1
  • = \frac{V_S}{2} - R_1 \frac{V_S}{2 R_S}
  • = \biggl(1 - \frac{R_1}{R_S} \biggr) \frac{V_S}{2}
  • = \biggl(1 - \frac{R_L}{R_S} \cdot \frac{R_1}{R_L} \biggr) \frac{V_S}{2}
  • = \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
  • \\[2 em]
  • V_3 &= V_2 - R_2 I_2
  • = \frac{A V_S}{2} - R_2 \biggl(-\frac{A}{R_L} \frac{V_S}{2} \biggr)
  • = A \biggl(1 + \frac{R_2}{R_L} \biggr) \frac{V_S}{2}
  • = A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
  • \end{align}
  • \]
  • Now comparing equation 7 with equations 8 and 9, respectively, we
  • obtain two independent equations in which the only unknown are
  • $r_1,r_2,r_3$:
  • \[
  • \begin{align}
  • \left\{
  • \begin{aligned}
  • r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • =
  • \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
  • \\[2 em]
  • r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • =
  • A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
  • \end{aligned}
  • \right.
  • \qquad\qquad &\Leftrightarrow \qquad\qquad
  • \left\{
  • \begin{aligned}
  • r_3 \biggl(B - A \biggr) = \biggl(1 - B \cdot r_1 \biggr)
  • \\[2 em]
  • r_3 \biggl(B - A \biggr) = A \biggl(1 + r_2 \biggr)
  • \end{aligned}
  • \right.
  • \qquad\qquad \Leftrightarrow \qquad\qquad
  • \nonumber\\[2 em]
  • \qquad\qquad &\Leftrightarrow \qquad\qquad
  • \left\{
  • \begin{aligned}
  • r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • \\[2 em]
  • r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • \end{aligned}
  • \right.
  • \end{align}
  • \]
  • Now let's focus on port 2. Looking into it we see an impedance
  • $R_L$ which can be calculated using the usual methods of
  • Thevenin's theorem:
  • \[
  • \begin{gather}
  • R_L
  • = R_2 + R_3 \parallel (R_1 + R_S)
  • = R_2 + \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
  • \qquad \Leftrightarrow
  • \\[2 em]
  • \quad \Leftrightarrow \quad
  • R_L - R_2
  • = \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
  • \quad \Leftrightarrow \quad
  • \frac{1}{ R_L - R_2 }
  • = \frac{1}{R_3} + \frac{1}{R_1 + R_S}
  • \quad \Leftrightarrow \quad
  • \frac{1}{ 1 - \frac{R_2}{R_L} }
  • = \frac{R_L}{R_3} + \frac{1}{\frac{R_1}{R_L} + \frac{R_S}{R_L}}
  • \quad \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad \Leftrightarrow \qquad
  • \frac{1}{ 1 - r_2 }
  • = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
  • \end{gather}
  • \]
  • Now let's rewrite equations (9) like this:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • \\[2 em]
  • r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1 + \frac{1}{B} = \frac{2 + r_3 \biggl(A - B \biggr)}{B}
  • \\[2 em]
  • 1 - r_2 = \frac{2A - r_3 \biggl(B - A \biggr)}{A}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • \frac{1}{ r_1 + \frac{1}{B} } = \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \\[2 em]
  • \frac{1}{ 1 - r_2 } = \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • \end{aligned}
  • \right.
  • \end{gather}
  • \]
  • substituting (12) into (11) we get:
  • \[
  • \begin{gather}
  • \frac{1}{ 1 - r_2 }
  • = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
  • \qquad \Leftrightarrow \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \end{gather}
  • \]
  • Now we can solve (13) for $r_3$.
  • \[
  • \begin{gather}
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \qquad
  • \Leftrightarrow
  • \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{2 + r_3 \biggl(A - B \biggr) + B r_3}{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
  • \nonumber \\[2 em]
  • \Leftrightarrow
  • \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{2 + A r_3 }{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
  • \qquad
  • \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad
  • A r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]
  • = (2 + A r_3 ) \biggl[ 2A + r_3 \biggl(A - B \biggr) \biggr]
  • \qquad
  • \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad
  • 2A r_3 + A r_3^2 \biggl(A - B \biggr)
  • = 4A + 2r_3 \biggl(A - B \biggr) + 2A^2 r_3 + A r_3^2 \biggl(A - B \biggr)
  • \nonumber \\[2 em]
  • \qquad
  • 0
  • = 4A - 2Br_3 + 2A^2 r_3
  • = 4A + 2 r_3 (A^2 - B )
  • \qquad
  • \Leftrightarrow
  • \qquad
  • r_3 (B - A^2 ) = 2A
  • \nonumber \\[2 em]
  • r_3 = \frac {2A}{ B - A^2 }
  • \end{gather}
  • \]
  • And then substitute $r_3$ back into equations (12) to get $r_1,r_2$:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • = \frac{1 - \frac {2A}{ B - A^2 } \biggl(B - A \biggr)}{B}
  • = \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
  • \\[2 em]
  • r_2
  • &= \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • = \frac{ \frac {2A}{ B - A^2 } \biggl(B - A \biggr) - A}{A}
  • = \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow
  • \nonumber \\[2 em]
  • \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
  • = \frac{B + A^2 - 2AB}{B (B - A^2)}
  • = \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
  • \\[2 em]
  • r_2
  • &= \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
  • = \frac{ AB + A^3 - 2A^2}{A (B - A^2)}
  • = \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow
  • \nonumber \\[2 em]
  • \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
  • = \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • r_2
  • &= \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
  • = \frac{ B + A^2 - 2A}{B - A^2}
  • \end{aligned}
  • \right.
  • \end{gather}
  • \]
  • Therefore we end up with our solution for $r_1,r_2,r_3$, from
  • which you can get $R_1,R_2,R_3$:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1 &= \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • r_2 &= \frac{ B + A^2 - 2A}{B - A^2}
  • \\[2 em]
  • r_3 &= \frac {2A}{ B - A^2 }
  • \end{aligned}
  • \right.
  • \qquad
  • \Leftrightarrow
  • \qquad
  • \left\{
  • \begin{aligned}
  • R_1 &= R_L \cdot \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • R_2 &= R_L \cdot \frac{ B + A^2 - 2A}{B - A^2}
  • \\[2 em]
  • R_3 &= R_L \cdot \frac {2A}{ B - A^2 }
  • \end{aligned}
  • \right.
  • \end{gather}
  • \]
  • which matches your solutions.
  • Here is another take at that problem.
  • First let's define some quantities that will be useful later:
  • \[
  • \begin{align}
  • A &= \frac {V_2} {V_1}
  • \qquad\qquad
  • B = \frac {R_L} {R_S}
  • \qquad\qquad
  • r_1 = \frac {R_1} {R_L}
  • \qquad\qquad
  • r_2 = \frac {R_2} {R_L}
  • \qquad\qquad
  • r_3 = \frac {R_3} {R_L}
  • \tag{1}
  • \end{align}
  • \]
  • Since the attenuator port 1 has an input impedance that matches
  • the source, then the source voltage is split in two at the input.
  • Moreover, we also apply the definition of attenuation $A$.
  • \[
  • \begin{align}
  • V_1 &= \frac{V_S}{2}
  • \qquad\qquad
  • V_2 = A V_1 = A \frac{V_S}{2}
  • \tag{2}
  • \end{align}
  • \]
  • We can therefore compute the currents into the ports as:
  • \[
  • \begin{align}
  • I_1 &= \frac{V_S}{2R_S}
  • \tag{3}
  • \\[2 em]
  • I_2 &= -\frac{V_2}{R_L} = -\frac{A}{R_L} \frac{V_S}{2}
  • \tag{4}
  • \end{align}
  • \]
  • Now let's focus on the internal node, the junction between
  • $R_1,R_2, R_3$ (let's call it node 3). You can use KCL to compute
  • the current in $R_3$ and then use Ohm's law to obtain $V_3$:
  • \[
  • \begin{align}
  • I_3 &= I_1 + I_2
  • = \frac{V_S}{2R_S} - \frac{A}{R_L} \frac{V_S}{2}
  • = \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2}
  • \tag{5}
  • \\[2 em]
  • V_3 &= R_3 I_3
  • = R_3 \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2}
  • = \frac{R_3}{R_L} \biggl(\frac{R_L}{R_S} - A \biggr) \frac{V_S}{2}
  • = r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • \tag{6}
  • \end{align}
  • \]
  • Now we can compute $V_3$ also using KVL applied to the input and
  • output loops, obtaining two more independent equations for $V_3$:
  • \[
  • \begin{align}
  • V_3 &= V_1 - R_1 I_1
  • = \frac{V_S}{2} - R_1 \frac{V_S}{2 R_S}
  • = \biggl(1 - \frac{R_1}{R_S} \biggr) \frac{V_S}{2}
  • = \biggl(1 - \frac{R_L}{R_S} \cdot \frac{R_1}{R_L} \biggr) \frac{V_S}{2}
  • = \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
  • \tag{7}
  • \\[2 em]
  • V_3 &= V_2 - R_2 I_2
  • = \frac{A V_S}{2} - R_2 \biggl(-\frac{A}{R_L} \frac{V_S}{2} \biggr)
  • = A \biggl(1 + \frac{R_2}{R_L} \biggr) \frac{V_S}{2}
  • = A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
  • \tag{8}
  • \end{align}
  • \]
  • Now comparing equation 7 with equations 8 and 9, respectively, we
  • obtain two independent equations in which the only unknown are
  • $r_1,r_2,r_3$:
  • \[
  • \begin{align}
  • \left\{
  • \begin{aligned}
  • r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • =
  • \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
  • \\[2 em]
  • r_3 \biggl(B - A \biggr) \frac{V_S}{2}
  • =
  • A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
  • \end{aligned}
  • \right.
  • \qquad\qquad &\Leftrightarrow \qquad\qquad
  • \left\{
  • \begin{aligned}
  • r_3 \biggl(B - A \biggr) = \biggl(1 - B \cdot r_1 \biggr)
  • \\[2 em]
  • r_3 \biggl(B - A \biggr) = A \biggl(1 + r_2 \biggr)
  • \end{aligned}
  • \right.
  • \qquad\qquad \Leftrightarrow \qquad\qquad
  • \nonumber\\[2 em]
  • \qquad\qquad &\Leftrightarrow \qquad\qquad
  • \left\{
  • \begin{aligned}
  • r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • \\[2 em]
  • r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • \end{aligned}
  • \right.
  • \tag{9}
  • \end{align}
  • \]
  • Now let's focus on port 2. Looking into it we see an impedance
  • $R_L$ which can be calculated using the usual methods of
  • Thevenin's theorem:
  • \[
  • \begin{gather}
  • R_L
  • = R_2 + R_3 \parallel (R_1 + R_S)
  • = R_2 + \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
  • \qquad \Leftrightarrow
  • \tag{10}
  • \\[2 em]
  • \quad \Leftrightarrow \quad
  • R_L - R_2
  • = \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
  • \quad \Leftrightarrow \quad
  • \frac{1}{ R_L - R_2 }
  • = \frac{1}{R_3} + \frac{1}{R_1 + R_S}
  • \quad \Leftrightarrow \quad
  • \frac{1}{ 1 - \frac{R_2}{R_L} }
  • = \frac{R_L}{R_3} + \frac{1}{\frac{R_1}{R_L} + \frac{R_S}{R_L}}
  • \quad \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad \Leftrightarrow \qquad
  • \frac{1}{ 1 - r_2 }
  • = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
  • \tag{11}
  • \end{gather}
  • \]
  • Now let's rewrite equations (9) like this:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • \\[2 em]
  • r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1 + \frac{1}{B} = \frac{2 + r_3 \biggl(A - B \biggr)}{B}
  • \\[2 em]
  • 1 - r_2 = \frac{2A - r_3 \biggl(B - A \biggr)}{A}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • \frac{1}{ r_1 + \frac{1}{B} } = \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \\[2 em]
  • \frac{1}{ 1 - r_2 } = \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • \end{aligned}
  • \right.
  • \tag{12}
  • \end{gather}
  • \]
  • substituting (12) into (11) we get:
  • \[
  • \begin{gather}
  • \frac{1}{ 1 - r_2 }
  • = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
  • \qquad \Leftrightarrow \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \tag{13}
  • \end{gather}
  • \]
  • Now we can solve (13) for $r_3$.
  • \[
  • \begin{gather}
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
  • \qquad
  • \Leftrightarrow
  • \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{2 + r_3 \biggl(A - B \biggr) + B r_3}{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
  • \nonumber \\[2 em]
  • \Leftrightarrow
  • \qquad
  • \frac{A}{2A + r_3 \biggl(A - B \biggr)}
  • = \frac{2 + A r_3 }{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
  • \qquad
  • \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad
  • A r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]
  • = (2 + A r_3 ) \biggl[ 2A + r_3 \biggl(A - B \biggr) \biggr]
  • \qquad
  • \Leftrightarrow
  • \nonumber \\[2 em]
  • \qquad
  • 2A r_3 + A r_3^2 \biggl(A - B \biggr)
  • = 4A + 2r_3 \biggl(A - B \biggr) + 2A^2 r_3 + A r_3^2 \biggl(A - B \biggr)
  • \nonumber \\[2 em]
  • \qquad
  • 0
  • = 4A - 2Br_3 + 2A^2 r_3
  • = 4A + 2 r_3 (A^2 - B )
  • \qquad
  • \Leftrightarrow
  • \qquad
  • r_3 (B - A^2 ) = 2A
  • \nonumber \\[2 em]
  • r_3 = \frac {2A}{ B - A^2 }
  • \tag{14}
  • \end{gather}
  • \]
  • And then substitute $r_3$ back into equations (12) to get $r_1,r_2$:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{1 - r_3 \biggl(B - A \biggr)}{B}
  • = \frac{1 - \frac {2A}{ B - A^2 } \biggl(B - A \biggr)}{B}
  • = \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
  • \\[2 em]
  • r_2
  • &= \frac{r_3 \biggl(B - A \biggr) - A}{A}
  • = \frac{ \frac {2A}{ B - A^2 } \biggl(B - A \biggr) - A}{A}
  • = \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow
  • \nonumber \\[2 em]
  • \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
  • = \frac{B + A^2 - 2AB}{B (B - A^2)}
  • = \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
  • \\[2 em]
  • r_2
  • &= \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
  • = \frac{ AB + A^3 - 2A^2}{A (B - A^2)}
  • = \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
  • \end{aligned}
  • \right.
  • \qquad \Leftrightarrow
  • \nonumber \\[2 em]
  • \Leftrightarrow \qquad
  • \left\{
  • \begin{aligned}
  • r_1
  • &= \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
  • = \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • r_2
  • &= \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
  • = \frac{ B + A^2 - 2A}{B - A^2}
  • \end{aligned}
  • \right.
  • \tag{15}
  • \end{gather}
  • \]
  • Therefore we end up with our solution for $r_1,r_2,r_3$, from
  • which you can get $R_1,R_2,R_3$:
  • \[
  • \begin{gather}
  • \left\{
  • \begin{aligned}
  • r_1 &= \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • r_2 &= \frac{ B + A^2 - 2A}{B - A^2}
  • \\[2 em]
  • r_3 &= \frac {2A}{ B - A^2 }
  • \end{aligned}
  • \right.
  • \qquad
  • \Leftrightarrow
  • \qquad
  • \left\{
  • \begin{aligned}
  • R_1 &= R_L \cdot \frac{ 1 + A^2/B - 2A}{B - A^2}
  • \\[2 em]
  • R_2 &= R_L \cdot \frac{ B + A^2 - 2A}{B - A^2}
  • \\[2 em]
  • R_3 &= R_L \cdot \frac {2A}{ B - A^2 }
  • \end{aligned}
  • \right.
  • \tag{16}
  • \end{gather}
  • \]
  • which matches your solutions.
#1: Initial revision by user avatar Lorenzo Donati‭ · 2023-08-21T11:54:38Z (8 months ago)
Here is another take at that problem.

First let's define some quantities that will be useful later:

\[
\begin{align}
    A &= \frac {V_2} {V_1}
    \qquad\qquad
    B = \frac {R_L} {R_S}
    \qquad\qquad
    r_1 = \frac {R_1} {R_L}
    \qquad\qquad
    r_2 = \frac {R_2} {R_L}
    \qquad\qquad
    r_3 = \frac {R_3} {R_L}
\end{align}
\]

Since the attenuator port 1 has an input impedance that matches
the source, then the source voltage is split in two at the input.
Moreover, we also apply the definition of attenuation $A$.

\[
\begin{align}
    V_1 &= \frac{V_S}{2}
    \qquad\qquad
    V_2 = A V_1 = A \frac{V_S}{2}
\end{align}
\]

We can therefore compute the currents into the ports as:

\[
\begin{align}
    I_1 &= \frac{V_S}{2R_S}
    \\[2 em]
    I_2 &= -\frac{V_2}{R_L} = -\frac{A}{R_L} \frac{V_S}{2}
\end{align}
\]

Now let's focus on the internal node, the junction between
$R_1,R_2, R_3$ (let's call it node 3). You can use KCL to compute
the current in $R_3$ and then use Ohm's law to obtain $V_3$:

\[
\begin{align}
    I_3 &= I_1 + I_2
    = \frac{V_S}{2R_S} - \frac{A}{R_L} \frac{V_S}{2}
    = \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr)  \frac{V_S}{2}
    \\[2 em]
    V_3 &= R_3 I_3
    = R_3 \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr)  \frac{V_S}{2}
    = \frac{R_3}{R_L} \biggl(\frac{R_L}{R_S} - A \biggr)  \frac{V_S}{2}
    = r_3 \biggl(B - A \biggr)  \frac{V_S}{2}
\end{align}
\]

Now we can compute $V_3$ also using KVL applied to the input and
output loops, obtaining two more independent equations for $V_3$:

\[
\begin{align}
    V_3 &= V_1 - R_1 I_1
    = \frac{V_S}{2} - R_1 \frac{V_S}{2 R_S}
    = \biggl(1 - \frac{R_1}{R_S} \biggr) \frac{V_S}{2}
    = \biggl(1 - \frac{R_L}{R_S} \cdot \frac{R_1}{R_L} \biggr) \frac{V_S}{2}
    = \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
    \\[2 em]
    V_3 &= V_2 - R_2 I_2
    = \frac{A V_S}{2} - R_2 \biggl(-\frac{A}{R_L} \frac{V_S}{2} \biggr)
    = A \biggl(1 + \frac{R_2}{R_L} \biggr) \frac{V_S}{2}
    = A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
\end{align}
\]

Now comparing equation 7 with equations 8 and 9, respectively, we
obtain two independent equations in which the only unknown are
$r_1,r_2,r_3$:

\[
\begin{align}
    \left\{
        \begin{aligned}
             r_3 \biggl(B - A \biggr)  \frac{V_S}{2}
             =
             \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2}
             \\[2 em]
             r_3 \biggl(B - A \biggr)  \frac{V_S}{2}
             =
            A \biggl(1 + r_2 \biggr) \frac{V_S}{2}
        \end{aligned}
    \right.
    \qquad\qquad &\Leftrightarrow \qquad\qquad
    \left\{
        \begin{aligned}
             r_3 \biggl(B - A \biggr) = \biggl(1 - B \cdot r_1 \biggr)
             \\[2 em]
             r_3 \biggl(B - A \biggr) = A \biggl(1 + r_2 \biggr)
        \end{aligned}
    \right.
    \qquad\qquad \Leftrightarrow \qquad\qquad
    \nonumber\\[2 em]
    \qquad\qquad &\Leftrightarrow \qquad\qquad
    \left\{
        \begin{aligned}
             r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
             \\[2 em]
             r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
        \end{aligned}
    \right.
\end{align}
\]

Now let's focus on port 2. Looking into it we see an impedance
$R_L$ which can be calculated using the usual methods of
Thevenin's theorem:


\[
\begin{gather}
    R_L
    = R_2 + R_3 \parallel (R_1 + R_S)
    = R_2 + \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
    \qquad \Leftrightarrow
    \\[2 em]
    \quad \Leftrightarrow \quad
    R_L - R_2
    = \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} }
    \quad \Leftrightarrow \quad
    \frac{1}{ R_L - R_2 }
    = \frac{1}{R_3} + \frac{1}{R_1 + R_S}
    \quad \Leftrightarrow \quad
    \frac{1}{ 1 - \frac{R_2}{R_L} }
    = \frac{R_L}{R_3} + \frac{1}{\frac{R_1}{R_L} + \frac{R_S}{R_L}}
    \quad \Leftrightarrow
    \nonumber \\[2 em]
    \qquad \Leftrightarrow \qquad
    \frac{1}{ 1 - r_2 }
    = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
\end{gather}
\]

Now let's rewrite equations (9) like this:

\[
\begin{gather}
    \left\{
        \begin{aligned}
             r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B}
             \\[2 em]
             r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A}
        \end{aligned}
    \right.
    \qquad \Leftrightarrow \qquad
    \left\{
        \begin{aligned}
             r_1 + \frac{1}{B} = \frac{2 + r_3 \biggl(A - B \biggr)}{B}
             \\[2 em]
             1 - r_2 = \frac{2A - r_3 \biggl(B - A \biggr)}{A}
        \end{aligned}
    \right.
    \qquad \Leftrightarrow \qquad
    \left\{
        \begin{aligned}
             \frac{1}{ r_1 + \frac{1}{B} } = \frac{B}{2 + r_3 \biggl(A - B \biggr)}
             \\[2 em]
             \frac{1}{ 1 - r_2 } = \frac{A}{2A + r_3 \biggl(A - B \biggr)}
        \end{aligned}
    \right.
\end{gather}
\]

substituting (12) into (11) we get:

\[
\begin{gather}
    \frac{1}{ 1 - r_2 }
    = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}}
    \qquad \Leftrightarrow \qquad
    \frac{A}{2A + r_3 \biggl(A - B \biggr)}
    = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
\end{gather}
\]

Now we can solve (13) for $r_3$.


\[
\begin{gather}
     \frac{A}{2A + r_3 \biggl(A - B \biggr)}
    = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)}
    \qquad
    \Leftrightarrow
    \qquad
     \frac{A}{2A + r_3 \biggl(A - B \biggr)}
    = \frac{2 + r_3 \biggl(A - B \biggr) + B r_3}{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
    \nonumber \\[2 em]
    \Leftrightarrow
    \qquad
     \frac{A}{2A + r_3 \biggl(A - B \biggr)}
    = \frac{2 + A r_3 }{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]}
    \qquad
    \Leftrightarrow
    \nonumber \\[2 em]
    \qquad
    A r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]
     = (2 + A r_3 ) \biggl[ 2A + r_3 \biggl(A - B \biggr) \biggr]
    \qquad
    \Leftrightarrow
    \nonumber \\[2 em]
    \qquad
    2A r_3 + A r_3^2 \biggl(A - B \biggr)
     = 4A + 2r_3 \biggl(A - B \biggr) + 2A^2 r_3 + A r_3^2 \biggl(A - B \biggr)
    \nonumber \\[2 em]
    \qquad
    0
    = 4A - 2Br_3 + 2A^2 r_3
    = 4A + 2 r_3 (A^2 - B )
    \qquad
    \Leftrightarrow
    \qquad
    r_3 (B - A^2 ) = 2A
    \nonumber \\[2 em]
    r_3 = \frac {2A}{ B - A^2 }
\end{gather}
\]

And then substitute $r_3$ back into equations (12) to get $r_1,r_2$:

\[
\begin{gather}
    \left\{
        \begin{aligned}
             r_1
             &= \frac{1 - r_3 \biggl(B - A \biggr)}{B}
             = \frac{1 - \frac {2A}{ B - A^2 } \biggl(B - A \biggr)}{B}
             = \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
             \\[2 em]
             r_2
             &= \frac{r_3 \biggl(B - A \biggr) - A}{A}
             = \frac{ \frac {2A}{ B - A^2 } \biggl(B - A \biggr) - A}{A}
             = \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
        \end{aligned}
    \right.
    \qquad \Leftrightarrow
    \nonumber \\[2 em]
    \Leftrightarrow \qquad
    \left\{
        \begin{aligned}
             r_1
             &= \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)}
             = \frac{B + A^2 - 2AB}{B (B - A^2)}
             = \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
             \\[2 em]
             r_2
             &= \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)}
             = \frac{ AB + A^3 - 2A^2}{A (B - A^2)}
             = \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
        \end{aligned}
    \right.
    \qquad \Leftrightarrow
    \nonumber \\[2 em]
    \Leftrightarrow \qquad
    \left\{
        \begin{aligned}
             r_1
             &= \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)}
             = \frac{ 1 + A^2/B - 2A}{B - A^2}
             \\[2 em]
             r_2
             &= \frac{ A (B + A^2 - 2A)}{A (B - A^2)}
             = \frac{ B + A^2 - 2A}{B - A^2}
        \end{aligned}
    \right.
\end{gather}
\]

Therefore we end up with our solution for $r_1,r_2,r_3$, from
which you can get $R_1,R_2,R_3$:

\[
\begin{gather}
    \left\{
        \begin{aligned}
            r_1 &=  \frac{ 1 + A^2/B - 2A}{B - A^2}
            \\[2 em]
            r_2 &= \frac{ B + A^2 - 2A}{B - A^2}
            \\[2 em]
            r_3 &= \frac {2A}{ B - A^2 }
        \end{aligned}
    \right.
    \qquad
    \Leftrightarrow
    \qquad
    \left\{
        \begin{aligned}
            R_1 &= R_L \cdot \frac{ 1 + A^2/B - 2A}{B - A^2}
            \\[2 em]
            R_2 &= R_L \cdot \frac{ B + A^2 - 2A}{B - A^2}
            \\[2 em]
            R_3 &= R_L \cdot \frac {2A}{ B - A^2 }
        \end{aligned}
    \right.
\end{gather}
\]

which matches your solutions.