Comments on How to plot the I-V curve of a tunnel diode?
Parent
How to plot the I-V curve of a tunnel diode?
I am trying to understand tunnel diodes by experimenting with them. Research tells me they can have negative resistance, and can be used to build a high frequency oscillator. Tunnel diodes are supposed to have this I/V characteristic:
I don't really understand negative resistance, so I thought plotting the I-V characteristics myself would help me understand. Unfortunately, that didn't work.
What I did:
- Connect PSU in series with a protective, current limiting resistor, and the tunnel diode.
- Increase/decrease voltage level, in steps as fine as mV, and measure corresponding current values, as fine as 100 µA.
- Record each point on a graph of current as a function of voltage.
Here is my test setup:
As I increase voltage from 0 to IpeakV, the current increases as expected. Once approaching the IpeakV, the current suddenly jumped from tens of µA to some 400/500 mA. In other words, I just missed the most important measurements, those of the negative resistance region.
Why can I not measure the current as soon as the gradually increasing voltage V enters the negative region? How can I tell the tunnel diode not to "skip" the tunnel?
Apparently you want to measure the current/voltage relationship of a tunnel diode. The tricky part is that the voltage …
4y ago
Don't put the "protective" series resistor: connect directly your regulated power supply to the diode (with a short wire …
4y ago
How to test a Tunnel diode in 25 words or less. - With DC bias = 490mV with fine tuning and a small signal swing of …
4y ago
Setup We can best understand the behavior of the tunnel diode in the region with negative resistance if we imagine …
4y ago
Post
Don't put the "protective" series resistor: connect directly your regulated power supply to the diode (with a short wire) and measure the current: the voltage regulator is all what you need to protect the diode and ensures you are not missing the negative resistance part. Then you increase very slowly the voltage until the curve is completed.
I once traced the VI curve of a a Gunn diode that way, with a stupid LM317 regulator. The only difference is that the Gunn diode has a higher voltage graph.
But since you say you have a well regulated power supply that allows fine tuning from 0V to 5V (at least), there should be no problem.
Otherwise, it is also easy to build an adjustable regulator for low voltages by driving a rail to rail opamp follower with a pot. This is sufficient for this task, since only few tens of mA are needed.
Now only the milliammeter resistance can create a problem.
Not a problem at all if your power supply has an integrated ammeter. But even without that, it is unlikely that the few tens of millivolts drop from the milliammeter would cause instability and missing the negative resistance part of the diode. Of course, the voltage should be measured at the terminals of the diode, and not after the milliammeter!
OR, with the pot-follower solution above, here is the schematic:
The voltage is measured at the terminals of the diode with the multimeter.
I'd break the pot up into a fixed resistor for the top part, and a pot to only allow up to a volt or so max for the bottom part. That reduces the settings that might cause damage, in addition to giving you higher adjustment resolution
In other words:
Yes, of course. My circuit was just "quick and dirty", but if it has to be used several times, it should be made safe as suggested by Olin.
Circuit Fantasist has also suggested the following:
This should work as well, despite I somewhat dislike the idea to add inductance inside the control loop (due to the terminals of the ammeter, or worse, due to the ammeter itself if an analog ammeter is used), near a negative resistance.
1 comment thread