Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Notifications
Mark all as read
Q&A

H(jω) does not exist for unstable systems, but we still use it when designing controllers - contradiction?

+2
−0

According to Signal processing and linear systems by Lathi, the transfer function $H(j\omega)$ does not exist for systems with poles in the RHP: -

Lathi

This makes sense to me, since $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} $. However, since the system is unstable $Y $ is unbounded (and growing) and the fourier transform doesn't exist for such functions. So $Y(j\omega)$ doesn't exist and therefore, $H(j\omega) $ must be meaningless for unstable systems.

BUT! we use $H(j\omega) $ when designing controllers for unstable systems anyway - and it works. We look at the Bode Plot, we look at the Nyquist Plot both of which you need to know $H(j\omega)$ and design a controller based on what we see - and the controller actually works!

How can this be? How can there be this contradiction between systems and signals theory and control theory? It seems that concepts like region of convergence and existence of fourier integral are only dealt with on coursework and once that's done, you don't hear from them ever again.

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

2 answers

+2
−0

I think this is partly semantics.

For example, consider designing a compensator for a power supply. The transfer function under consideration is essentially the open loop impulse response of the system. If that goes nuts, then you have other problems to fix first. You are right in that it needs to be stable (not oscillate or grow exponentially or something) in response to a single blip.

But again, that's the open loop response. You can certainly make a mess and cause closed loop instability with the wrong feedback, but that's not the transfer function being quantified. In the end, of course, we do care about the closed loop transfer function. By that time, we've designed the compensator (feedback) to make sure the system is stable.

Why does this post require moderator attention?
You might want to add some details to your flag.

1 comment thread

Hi Olin thanks for your answer. Yes, I realize you need the system to be stable before you can start ... (1 comment)
+2
−0

Please note that the text refers to the integral, or the mathematical evaluation through integration which, indeed, cannot be obtained. But that doesn't mean you can't obtain the Laplace transfer function directly. A hypothetical RLC filter with a negative resistor is very much possible. In fact, it can be made in practice with emulated elements, and its transfer function will give a pole in the RHP:

$$H(s)=\dfrac{\dfrac{1}{LC}}{s^2-\dfrac{1}{RC}s+\dfrac{1}{LC}}$$

This can be obtaind by considering the raw Laplace equivalents of the elements. Is it unstable? Yes. Can it be done practically? Yes, here is the concept of it:

-RLC

You can clearly see the phase going up. Does that violate the textbook? No -- the textbook only picks on the mathematical aspect (Olin says it better: semantics).

Why does this post require moderator attention?
You might want to add some details to your flag.

1 comment thread

But it does violate the textbook. The Bode Plot on the left is a plot of \$H(j\omega)\$ which should ... (2 comments)

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!

Like what we're doing? Support us! Donate