Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on PCB as a wall of an underwater enclosure

Parent

PCB as a wall of an underwater enclosure

+8
−0

Can a circuit board be waterproof enough to form a wall of a waterproof enclosure?

Regular PCBs made of FR-4 with solder mask is what I have in mind. But I'm not barring less common PCB materials and processes, although I'd prefer something with moderate cost in moderate quantities.

10m depth in river and sea water.
Temperature range between +4°C and +40°C.
An ability to withstand freezing temperatures isn't required. But it's desirable, because that would let me field-test the device year round where I live.

Why would I want to expose a PCB to water? The malice aforethought is that the PCB has electrodes on the water side and a connector on the dry side. Here’s a rough and naïve sketch of what I have in mind.

front with electrodes rear with a connector

Solder mask overlaps the edges of the electrodes, and prevents water from getting under the electrodes.

Is ENIG plating enough to provide corrosion resistance for the exposed parts of the electrodes?

Vias are tented (or plugged, or via-in-pad, if necessary).

My findings so far:

I asked several PCB suppliers at a trade show about waterproofing PCBs, and one of them mentioned in passing that solder mask is waterproof. The common solder mask materials are epoxies (from what I read on the web), and epoxies can make good water resistant coatings. Two layers of solder mask, if coverage defects are a concern.

The wiki about FR-4 says that it has “near-zero water absorption”.

History
Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

5 comment threads

Conformal coatings? (1 comment)
FR-4 and soldermask will slowly absorb moisture (1 comment)
re: corrosion - if there is a path for current to another wetted metal also in contact with seawater,... (1 comment)
What's the application? (5 comments)
Vias? (5 comments)
Post
+4
−0

I guess it would work.

I have used electrodes on a PCB to detect whether water level got high enough to turn on a sump pump. It worked, although it hasn't been installed very long. In that case the PCB extends upwards to where it is dry. That's where wires are soldered that go to the detection circuitry. The exposed parts of the electrodes are gold plated. I don't think there is anything else you can commonly get from a PCB process that would work.

I once worked on a product that had to detect whether it got immersed in a glass of drinking water. In that case, they used platinum-plated electrodes that were like thick and stiff wires coming out of the unit thru rubber grommets, so no PCB material was abused.

If I were doing this in a real product, I'd start with what you suggested, then try to do accelerated aging tests. I don't know what happens to soldermask after years of contact with water. It seems like it should be OK, but I'd test it before committing to volume production.

One thing I noticed with my one-off sump pump switch is that a film of crud gets deposited over anything immersed in the water for long. It doesn't hurt the electrodes, but I don't know if long term it might make it difficult to tell wet from dry due to the leakage. My particular water has a lot of iron in it.

One of my current investigations is sensing water level (not just present or not present) with a PCB, ultimately intended for a real product. I am uncomfortable with a direct electrical connection, so am using capacitive sense. Everything is covered by the soldermask. The one-off prototype is working very well, but I have no long-term reliability info.

You mentioned platinum-plated electrodes which dipped into drinking water. I noticed that high-end conductivity sensors use platinum electrodes (low-end sensors use stainless steel). I wonder why platinum? Is there something wrong with gold?

I don't know. I suspect two issues, process and durability. There is a well established process for applying gold coatings to PC board conductors. You can get gold-plated wire, but it's not common. We use gold-plated nichrome wire in some of our products, and it's a custom special order and not easy to arrange.

Gold seems better for contacts. I've tested gold/gold and gold/nichrome contacts. Even though nichrome is reasonably inert and it was clean, the electrical contact was less reliable at low contact force.

On the other had, I expect platinum to be more mechanically durable.

However, this is all speculation and the original answer stands: I don't know.

History
Why does this post require moderator attention?
You might want to add some details to your flag.

2 comment threads

Usage (1 comment)
Platinum electrodes (1 comment)
Usage
misk94555‭ wrote 2 months ago

Olin Lathrop‭ Every 15 to 40 days these sensors will be retrieved. Every year there will be off-season maintenance. The PCB with electrodes can be replaced once a year, if it’s cheap enough. It’s expected that a quarter of these sensors will be lost each year to storms.