Comments on Deriving resistor values for a taper pad attenuator
Parent
Deriving resistor values for a taper pad attenuator
A taper pad is a resistive attenuator that maintains impedances on both ports and provides a specific amount of gain-loss ($A_{12}$): -
I have derived formulas for each resistor (that I know to be correct) and have checked with micro-cap using DC analysis: -
"So what" you might think. Well the problem is really that it took me ages to derive the formulas and, I am convinced that there must be a simpler approach than the method I took so, what I'm looking for is a shrewd and insightful way of finding (say) the value of R1 given: -
- The required gain-loss i.e. $\frac{V_2}{V_1}$ or $\frac{V_{OUT}}{V_{IN}}$
- The input impedance, $R_{IN}$
- The output load impedance, $R_{L}$
I don't want answers that say if you "do this" you can "find that" then it's easy to drill-down to what you want. I want to see the actual math. I've done it (and my algebra is correct) but, it was very long-winded and I'm sure I missed a trick along the way.
I will also add one more important thing that I've come to realize: none of the existing calculators out there (apart from mine) get the formulas correct. They show correct formulas for equal input and output impedance but, they screw up when the input and output impedances are different.
Post
Here is another take at that problem.
First let's define some quantities that will be useful later:
\[ \begin{align} A &= \frac {V_2} {V_1} \qquad\qquad B = \frac {R_L} {R_S} \qquad\qquad r_1 = \frac {R_1} {R_L} \qquad\qquad r_2 = \frac {R_2} {R_L} \qquad\qquad r_3 = \frac {R_3} {R_L} \tag{1} \end{align} \]Since the attenuator port 1 has an input impedance that matches the source, then the source voltage is split in two at the input. Moreover, we also apply the definition of attenuation $A$.
\[ \begin{align} V_1 &= \frac{V_S}{2} \qquad\qquad V_2 = A V_1 = A \frac{V_S}{2} \tag{2} \end{align} \]We can therefore compute the currents into the ports as:
\[ \begin{align} I_1 &= \frac{V_S}{2R_S} \tag{3} \\[2 em] I_2 &= -\frac{V_2}{R_L} = -\frac{A}{R_L} \frac{V_S}{2} \tag{4} \end{align} \]Now let's focus on the internal node, the junction between $R_1,R_2, R_3$ (let's call it node 3). You can use KCL to compute the current in $R_3$ and then use Ohm's law to obtain $V_3$:
\[ \begin{align} I_3 &= I_1 + I_2 = \frac{V_S}{2R_S} - \frac{A}{R_L} \frac{V_S}{2} = \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2} \tag{5} \\[2 em] V_3 &= R_3 I_3 = R_3 \biggl(\frac{1}{R_S} - \frac{A}{R_L} \biggr) \frac{V_S}{2} = \frac{R_3}{R_L} \biggl(\frac{R_L}{R_S} - A \biggr) \frac{V_S}{2} = r_3 \biggl(B - A \biggr) \frac{V_S}{2} \tag{6} \end{align} \]Now we can compute $V_3$ also using KVL applied to the input and output loops, obtaining two more independent equations for $V_3$:
\[ \begin{align} V_3 &= V_1 - R_1 I_1 = \frac{V_S}{2} - R_1 \frac{V_S}{2 R_S} = \biggl(1 - \frac{R_1}{R_S} \biggr) \frac{V_S}{2} = \biggl(1 - \frac{R_L}{R_S} \cdot \frac{R_1}{R_L} \biggr) \frac{V_S}{2} = \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2} \tag{7} \\[2 em] V_3 &= V_2 - R_2 I_2 = \frac{A V_S}{2} - R_2 \biggl(-\frac{A}{R_L} \frac{V_S}{2} \biggr) = A \biggl(1 + \frac{R_2}{R_L} \biggr) \frac{V_S}{2} = A \biggl(1 + r_2 \biggr) \frac{V_S}{2} \tag{8} \end{align} \]Now comparing equation 7 with equations 8 and 9, respectively, we obtain two independent equations in which the only unknown are $r_1,r_2,r_3$:
\[ \begin{align} \left\{ \begin{aligned} r_3 \biggl(B - A \biggr) \frac{V_S}{2} = \biggl(1 - B \cdot r_1 \biggr) \frac{V_S}{2} \\[2 em] r_3 \biggl(B - A \biggr) \frac{V_S}{2} = A \biggl(1 + r_2 \biggr) \frac{V_S}{2} \end{aligned} \right. \qquad\qquad &\Leftrightarrow \qquad\qquad \left\{ \begin{aligned} r_3 \biggl(B - A \biggr) = \biggl(1 - B \cdot r_1 \biggr) \\[2 em] r_3 \biggl(B - A \biggr) = A \biggl(1 + r_2 \biggr) \end{aligned} \right. \qquad\qquad \Leftrightarrow \qquad\qquad \nonumber\\[2 em] \qquad\qquad &\Leftrightarrow \qquad\qquad \left\{ \begin{aligned} r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B} \\[2 em] r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A} \end{aligned} \right. \tag{9} \end{align} \]Now let's focus on port 2. Looking into it we see an impedance $R_L$ which can be calculated using the usual methods of Thevenin's theorem:
\[ \begin{gather} R_L = R_2 + R_3 \parallel (R_1 + R_S) = R_2 + \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} } \qquad \Leftrightarrow \tag{10} \\[2 em] \quad \Leftrightarrow \quad R_L - R_2 = \frac{1}{ \frac{1}{R_3} + \frac{1}{R_1 + R_S} } \quad \Leftrightarrow \quad \frac{1}{ R_L - R_2 } = \frac{1}{R_3} + \frac{1}{R_1 + R_S} \quad \Leftrightarrow \quad \frac{1}{ 1 - \frac{R_2}{R_L} } = \frac{R_L}{R_3} + \frac{1}{\frac{R_1}{R_L} + \frac{R_S}{R_L}} \quad \Leftrightarrow \nonumber \\[2 em] \qquad \Leftrightarrow \qquad \frac{1}{ 1 - r_2 } = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}} \tag{11} \end{gather} \]Now let's rewrite equations (9) like this:
\[ \begin{gather} \left\{ \begin{aligned} r_1 = \frac{1 - r_3 \biggl(B - A \biggr)}{B} \\[2 em] r_2 = \frac{r_3 \biggl(B - A \biggr) - A}{A} \end{aligned} \right. \qquad \Leftrightarrow \qquad \left\{ \begin{aligned} r_1 + \frac{1}{B} = \frac{2 + r_3 \biggl(A - B \biggr)}{B} \\[2 em] 1 - r_2 = \frac{2A - r_3 \biggl(B - A \biggr)}{A} \end{aligned} \right. \qquad \Leftrightarrow \qquad \left\{ \begin{aligned} \frac{1}{ r_1 + \frac{1}{B} } = \frac{B}{2 + r_3 \biggl(A - B \biggr)} \\[2 em] \frac{1}{ 1 - r_2 } = \frac{A}{2A + r_3 \biggl(A - B \biggr)} \end{aligned} \right. \tag{12} \end{gather} \]substituting (12) into (11) we get:
\[ \begin{gather} \frac{1}{ 1 - r_2 } = \frac{1}{r_3} + \frac{1}{r_1 + \frac{1}{B}} \qquad \Leftrightarrow \qquad \frac{A}{2A + r_3 \biggl(A - B \biggr)} = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)} \tag{13} \end{gather} \]Now we can solve (13) for $r_3$.
\[ \begin{gather} \frac{A}{2A + r_3 \biggl(A - B \biggr)} = \frac{1}{r_3} + \frac{B}{2 + r_3 \biggl(A - B \biggr)} \qquad \Leftrightarrow \qquad \frac{A}{2A + r_3 \biggl(A - B \biggr)} = \frac{2 + r_3 \biggl(A - B \biggr) + B r_3}{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]} \nonumber \\[2 em] \Leftrightarrow \qquad \frac{A}{2A + r_3 \biggl(A - B \biggr)} = \frac{2 + A r_3 }{r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr]} \qquad \Leftrightarrow \nonumber \\[2 em] \qquad A r_3 \biggl[ 2 + r_3 \biggl(A - B \biggr) \biggr] = (2 + A r_3 ) \biggl[ 2A + r_3 \biggl(A - B \biggr) \biggr] \qquad \Leftrightarrow \nonumber \\[2 em] \qquad 2A r_3 + A r_3^2 \biggl(A - B \biggr) = 4A + 2r_3 \biggl(A - B \biggr) + 2A^2 r_3 + A r_3^2 \biggl(A - B \biggr) \nonumber \\[2 em] \qquad 0 = 4A - 2Br_3 + 2A^2 r_3 = 4A + 2 r_3 (A^2 - B ) \qquad \Leftrightarrow \qquad r_3 (B - A^2 ) = 2A \nonumber \\[2 em] r_3 = \frac {2A}{ B - A^2 } \tag{14} \end{gather} \]And then substitute $r_3$ back into equations (12) to get $r_1,r_2$:
\[ \begin{gather} \left\{ \begin{aligned} r_1 &= \frac{1 - r_3 \biggl(B - A \biggr)}{B} = \frac{1 - \frac {2A}{ B - A^2 } \biggl(B - A \biggr)}{B} = \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)} \\[2 em] r_2 &= \frac{r_3 \biggl(B - A \biggr) - A}{A} = \frac{ \frac {2A}{ B - A^2 } \biggl(B - A \biggr) - A}{A} = \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)} \end{aligned} \right. \qquad \Leftrightarrow \nonumber \\[2 em] \Leftrightarrow \qquad \left\{ \begin{aligned} r_1 &= \frac{B - A^2 - 2A \biggl(B - A \biggr)}{B (B - A^2)} = \frac{B + A^2 - 2AB}{B (B - A^2)} = \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)} \\[2 em] r_2 &= \frac{ 2A \biggl(B - A \biggr) - A (B - A^2)}{A (B - A^2)} = \frac{ AB + A^3 - 2A^2}{A (B - A^2)} = \frac{ A (B + A^2 - 2A)}{A (B - A^2)} \end{aligned} \right. \qquad \Leftrightarrow \nonumber \\[2 em] \Leftrightarrow \qquad \left\{ \begin{aligned} r_1 &= \frac{B ( 1 + A^2/B - 2A)}{B (B - A^2)} = \frac{ 1 + A^2/B - 2A}{B - A^2} \\[2 em] r_2 &= \frac{ A (B + A^2 - 2A)}{A (B - A^2)} = \frac{ B + A^2 - 2A}{B - A^2} \end{aligned} \right. \tag{15} \end{gather} \]Therefore we end up with our solution for $r_1,r_2,r_3$, from which you can get $R_1,R_2,R_3$:
\[ \begin{gather} \left\{ \begin{aligned} r_1 &= \frac{ 1 + A^2/B - 2A}{B - A^2} \\[2 em] r_2 &= \frac{ B + A^2 - 2A}{B - A^2} \\[2 em] r_3 &= \frac {2A}{ B - A^2 } \end{aligned} \right. \qquad \Leftrightarrow \qquad \left\{ \begin{aligned} R_1 &= R_L \cdot \frac{ 1 + A^2/B - 2A}{B - A^2} \\[2 em] R_2 &= R_L \cdot \frac{ B + A^2 - 2A}{B - A^2} \\[2 em] R_3 &= R_L \cdot \frac {2A}{ B - A^2 } \end{aligned} \right. \tag{16} \end{gather} \]which matches your solutions.
1 comment thread